

CORSO DI DOTTORATO DI RICERCA IN Ingegneria Civile per l'Ambiente ed il Territorio

Risk and Sustainability in Civil Engineering, Environmental and Construction

Early warning systems for rainfall-induced landslides: a multi-scale approach

PhD candidate: Mr Gaetano PECORARO **Tutor:** Prof. Michele CALVELLO

XXXI Cycle - Coordinator: Prof. Ciro FAELLA

Fisciano, 28th June 2017

Introduction

Landslides are natural phenomena related to landscape evolution and represent one of the most important and significant geomorphological processes. Slope stability is based on the equilibrium between two types of forces, driving forces and resisting forces. When driving forces overcome resisting forces, the slope is unstable and results in mass wasting

Source: http://earthobservatory.nasa.gov/IOTD/view.php?id=7783

TRIGGERING FACTORS – SCHUSTER ET AL. (2002)

- Human activities
- Vibrations caused by earthquakes
- **Erosion**

Rainfall

- Volcanic eruptions
- □ Failure of natural dams
- □ Change in surface levels of water bodies

Landslide Early Warning Systems

Large regions (**REGIONAL scale**)

HONG KONG

Cheung (LARAM 2013)

BRAZIL – Rio de Janeiro

Source: Geo-RIO

ITALY – Emilia-Romagna

Martelloni et al. (2012)

□ Single slopes (LOCAL scale)

NORWAY – Åknes rockslide

Blikra (2008)

Central ITALY

Intrieri et al. (2012)

CANADA – Turtle Mountain

Moreno and Froese (2009)

Open issues at regional and local scale

Modified by UNISDR, 2006

1. How to improve landslide data collection, storage and distribution?

2. What are **the most relevant variables** to forecast the activity of different landslide types?

3. How to best incorporate **remote sensing data** into current land-based monitoring networks?

4. How does the accuracy of **regional and local landslide models** change according to leadtime and spatial scale?

5. How can monitoring data coming from **local LEWSs** be profitably used within warning models at **regional scale** and **vice versa**?

The "FraneItalia" database

Case study at regional scale: "Emilia-Romagna"

- GPM rainfall dataset managed using Google Earth Engine (Huffman et al., 2017)
- Rainfall-induced landslides from FraneItalia database
- Spatial discretization: 8 weather alert zones defined by Regional Law 1427/2005
- Period of analysis: March 2014 December 2015

Pecoraro and Calvello Poster EGU (2017)

Correlation between landslides and rainfall

Duration, D [h]

There is no clear difference between critical and non-critical rainfall

It is not possible to draw any line of distinction between triggering and non-triggering rainfall

Two-dimensional Bayesian probability

P(E,D|A) = probability of having a cumulated rainfall E with duration D, given the occurrence of a certain number of landslides

P(E | D) = probability of observing a cumulated rainfall E, given the duration D

P(A | E,D) = posterior landslide probability

$$\implies \frac{0.33 \times 0.33}{0.27} = 0.40$$

$$\implies \frac{3}{10} = 0.33$$

 $\frac{8}{30} = 0.27$

Two-dimensional Bayesian probability

☑ No data □ No landslides ■ 0 – 0.05 ■ 0.05 - 0.1 □ 0.1 - 0.2 ■ 0.2 - 0.3 ■ > 0.3

Research working plan at NGI (Oslo, NORWAY)

RISK REDUCTION THROUGH CLIMATE ADAPTION OF BUILDINGS AND INFRASTRUCTURES

Supervisor: Dr. José Mauricio Cepeda

WORK PACKAGE 3 – Landslides triggered by hydro-meteorological processes RESEARCH TASK WP3.4 – Early warning systems (EWS)

Scheduled activities:

→ Calibration and validation of warning models at through back-analysis of early-warning scenarios in Norway using different spatial and time scales and input datasets

Working phases:

- \rightarrow Data collection
 - \rightarrow Definition of a methodology
 - \rightarrow Results and Analyses

Landslides in soils in Norway

- Many shallow soil slides, debris slides/avalanches and debris flows in recent years (e.g. 2000, 2005, 2008, 2011, 2012, 2013, 2014)
- Triggered by rain, rapid snowmelt or a combination
- Steep slopes where loose deposits (tills deposit, alluvial and colluvial deposits, marine clay, weathered rocks) are in contact with bedrock materials

Datasets for analyses-1

Scale of analysis: CATCHMENT SCALE

THEMATIC MAPS

Datasets for analyses - 2

Local data

NGI

Norway

Pore water pressure

measurements from

projects

- > 60,000 landslide events
- Time period: 1100 2017
- Developed by: NGI, NVE, NGU, SVV, and regional observations

MONITORING DATA GRIDDED DATA from xgeo: 1x1 km² grid Precipitation-330,000 cells runoff HBV-**Gridded data** model 9-days prognosis Daily values Input: temperature and precipitation Output: Runoff, groundwater volume, unsaturated storage capacity, soil frost depth and snow depth

in

of

air

Methodology: Data selection

SELECTION CRITERIA

WEATHER-INDUCED LANDSLIDES

- Debris flows
- Debris slides
- Shallow slides
- **...**

> 200 catchments affected by weatherinduced landslides in loose soils in direct contact with bedrock in Norway

Methodology: Correlation between gridded and local data

MULTIPARAMETRIC EW THRESHOLDS based on gridded data and pore water pressure data

1st case study: the *"Namsen basin"*

"NAMSEN basin" – Summary sheet			
ID (Identification Co	ode) (5460	
Total Area [km ²]	5	56.512	
Number of landslic	des	11	
LI (Landslide Inde	x) 50	56.238	
Loose deposits [kn	n²] 12	12.712	
Bedrock [km ²]	12	12.649	
Selected landslide	L1 – 20 es L2 – 20 L3 – 20	L1 – 2013/12/30 L2 – 2014/10/28 L3 – 2015/09/19	
Available piezometers		5	
Contraduciant account of			
Geotecnnical parameters			
Loose material	Silty sa	Silty sand	
Layer thickness (z)	1 – 1.5	m	
Total unit weight (γ _t)	16.92 – 18.14	Kn/m ³	
Friction angle (φ)	34.55 – 40.53	o	
Slope angle (θ)	18.35	o	
	Data from N	IGI in-situ tests	

Preliminary results and Analyses

Future developments

Further applications to case studies in Norway

- Water supply
- Soil water content

Time schedule

Activity	Months						
Αςτινιτά	0-6	6-12	12-18	18-24	24-30	<u> 30-36</u>	
Literature review							
Regional scale							
Local scale							
Case studies							
Thesis							

Thank you for your

kínd attentíon

Gaetano Pecoraro PhD course in Risk and Sustainability in Civil Engineering, Environmental and Construction Department of Civil Engineering (DICIV) University of Salerno www.unisa.it - gpecoraro@unisa.it